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Abstract

By using a small Rossby number expansion in Hamilton’s principle for shallow water dynamics in a rapidly rotating
reference frame, we derive new approximate extended-geostrophic equations with pressure, or surface height, as the dynamical
variable. By introducing modeling parameters into the relation between the ageostrophic velocity and surface height, we obtain
a family of models for which the functional form of the potential vorticity, conserved on fluid particles, and of the kinetic energy
contribution to the globally conserved energy can be prescribed. The particular approximate equations which result when the
ageostrophic velocity is chosen to be in full agreement with an asymptotic small Rossby number expansion of the rotating
shallow water equations give a new model with apparently higher-order dynamical consistency than either quasigeostrophy
or geostrophic momentum. The geostrophic momentum model is recovered as a special case among these new models.
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1. Introduction

We are dealing with hierarchies of approximations obtained using Hamilton’s principle (HP) for continuum fluid
dynamics. The advantage of making approximations in HP for fluids is that the resulting Euler—Lagrange equations
preserve certain types of structure — e.g., Hamiltonian structure and its implications such as energy conservation and
Kelvin’s circulation theorem — possessed by the unapproximated equations. Several types of approximations may
be applied to HP. For example: (1) truncations of asymptotic expansions of the action using small dimensionless
parameters, e.g., aspect ratio, Froude number or Rossby number; (2) averages of the action in time, space, phase, or
some combination of these parameters; (3) substitution of solution ansatzes into HP which restrict the variations to a
desired class. We will concentrate on the first type here, although any of these types of approximation may be applied
to HP for the unapproximated equations before taking variations. The guidance for making the approximation in HP
typically derives from applying asymptotic analysis to the unapproximated equations. However, such approximations
may also arise as a version of “variation of parameters”, when an assumed form of the desired solution is substituted
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into HP before variations are taken. The latter approach is used, e.g., in the method of “collective coordinates” and
in the averaged Lagrangian method in physics [24].

In making approximations in HP for ideal fluid dynamics, the resulting approximate theory will automatically
possess two essential properties that are fundamental: energy conservation and Kelvin’s circulation theorem. By
Stokes’ theorem, the latter property leads to conservation of potential vorticity on fluid parcels. In the HP approach,
these conservation laws are ensured by Noether’s theorem, since they arise from symmetries of HP under, respec-
tively, time translations and fluid parcel relabeling, each of which leaves invariant the Eulerian fluid velocity, free
surface height, etc. Since the HP for ideal incompressible fluids is expressed only in terms of these Eulerian vari-
ables, it too is invariant. We emphasize at the outset that the HP approximation method we develop here applies in
all of ideal continuum mechanics, including, e.g., plasma physics and nonlinear elasticity, as well as fluids. In fact,
the approach applies to any dynamical equations derivable from HP.

Here, we use the HP approximation method to develop new models of rotating shallow water (RSW) dynamics
for small Rossby number, denoted ¢ <« 1. The models we develop are extended-geostrophic (EG) approximations,
which are intermediate in accuracy between the quasigeostrophic (QG) description and the full equations for RSW
dynamics with a free surface moving under gravity. The asymptotic QG theory is used as a guide for making
new EG approximations in HP for the RSW theory. Truncating the expansion of HP for RSW dynamics leads
successively to geostrophic balance at leading order; Salmon’s HP model [19] at order O(¢); and to a family of
EG models, dependent on the choice of modeling parameters, at order O(e?). In the latter case, we introduce four
modeling parameters: 7, which allows for different approximations of the potential vorticity; o, which provides
a relative weighting among different parts of the ageostrophic velocity; ¥, which allows different approximations
for the conserved energy; and 8, which allows weak spatial variations in the Coriolis parameter. The geostrophic
momentum (GM) equations [14] are recovered for particular values of the modeling parameters.

The primary motivation for this study follows from results of numerical experiments [2,3,5] demonstrating clearly
that at moderate values of €, the GM model [14] and Salmon’s HP model [19] provide disappointingly inaccurate
approximate solutions to the RSW equations compared, e.g., to these obtained from the balance equations (BE).
This is in spite of the fact that GM and Salmon’s HP model have Hamiltonian structure and prossess conservation
laws for global energy and for potential vorticity on fluid particles, whereas the BE for the RSW equations do
not conserve energy. Thus, possession of Hamiltonian structure is not sufficient in itself to ensure an accurate
approximate model. The question then arises of whether a more accurate approximate model with Hamiltonian
structure can be formulated. We show here that a family of approximate EG models for RSW dynamics may be
derived from HP by using a small Rossby number ¢-expansion in the RSW equations and by adding modeling
parameters to vary retained terms. The GM equations and Salmon’s HP model are recovered for certain values of
the modeling parameters. One particular new EG model is distinguished when the modeling parameters are chosen
to be those dictated by an asymptotic expansion of the RSW equations to O(e). Consequently, this model may be
expected to provide approximate solutions to the RSW equations with greater accuracy than those obtained with
GM or Salmon’s HP model. Numerical studies designed to test this expectation will be reported elsewhere.

Bottom topography and spatial variation of the Coriolis parameter are easily incorporated into HP for fluids
when variations of Lagrangian labels are taken at fixed Eulerian position and time. An alternative technically
equivalent approach is to take variations of particle paths at constant Lagrangian label, but this is less convenient
when the bottom topography and Coriolis parameter vary with Eulerian position. Salmon [19-22] discusses HP for
shallow water dynamics using such variations of particle paths at constant Lagrangian label, with applications to
semigeostrophic models in [22]. Abarbanel and Holm [1] and Holm [ 12] discuss HP for ideal incompressible fluid
dynamics in three dimensions using both these alternative approaches, as well as discussing the use of the resulting
Hamiltonian formulation in establishing Lyapunov stability conditions for equilibrium solutions. Holm et al. [11]
discuss these two alternative approaches from the Hamiltonian viewpoint and show that the transformation from the
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Lagrangian description of ideal continuum mechanics to the Eulerian description is a Poisson map (i.e., preserves
Poisson brackets). We shall use this result in Section 2.

In the rotating shallow water case, our strategy is to expand HP for shallow water dynamics around leading order
geostrophic balance in powers of the Rossby number, €, which we assume is small (¢ <« 1). For simplicity, we will
assume that the variations in the Coriolis parameter and in the bottom topography are O(¢). At each order in €, an
expression for the momentum density as a function of the other Eulerian fluid variables appears as a constraint,
which is imposed by using the fluid velocity u as a Lagrange multiplier. The leading order terms in HP for RSW
dynamics yield geostrophic balance. The order O(¢) terms incorporate into HP the kinetic energy density and
momentum density due to geostrophic horizontal motion. Truncation at this order in HP gives Salmon’s model [19].
The fluid theory we derive at order O(e?) in HP results in a family of models that depend on the choice of values
for the modeling parameters 7, «, y, and 8. By construction, the EG fluid theory obtained from the expansion of
HP for RSW at each order in the Rossby number expansion constrain yet preserve the RSW Hamiltonian structure.
So that theory at each order conserves global energy and possesses a Kelvin’s theorem which implies conservation
of potential vorticity on fluid parcels.

The plan of the paper is as follows. Section 2 develops the theory of HP for fluid motion in the Eulerian
representation so as to allow singular Lagrangians which are linear in the fluid velocity. This theory possesses a
modeling freedom that allows one to choose in the modeling procedure arbitrary forms of the momentum density
and energy density as independent functions of the free surface height and its spatial derivatives. In Section 3 we
use this freedom to develop HP for EG Eulerian shallow water models at orders O(¢) and O(e€?) in the expansion of
the HP for RSW dynamics in Rossby number, €. We use QG theory as a guide in posing the model equation (3.20)
for the ageostrophic fluid velocity. The order O(e?) model reduces to the GM equations for a certain choice of the
modeling parameters. Otherwise, the model conserves energy and has a Kelvin circulation theorem which depends
on the choice of modeling parameters. The effect of varying these modeling parameters in numerical solutions of
these equations will be studied elsewhere.

2. Hamilton’s principle for fluid motion in two dimensions
2.1. The general case

2.1.1. HP for variations in Lagrangian fluid labels
HP determines the dynamics of a continuum fluid medium moving in two space dimensions by requiring station-
arity of the action, L, given by

L :/dr dxdyL(%. VI*, VVIA etc)). 2.

under variations of Lagrangian labels /4 (x,7), A = 1.2, at fixed Eulerian position x = (x, y) and time . The
Lagrangian label / 4(x, 1) moves with the fluid, so it satisfies the following characteristic equations:
dih :
~dt—zlf?+u’lf}=0, iA=1,2, 2.2)

in which we sum over repeated indices and use subscript notation for partial derivatives. Consequently, the defor-
mation gradient D = /4 satisfies

%D} +u- VD) + DM =0, i A=1.2. (2.3)
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and its determinant D = del(D,.A) obeys the continuity equation,
D, +V . .Du=0. 24)

The dependent variables for incompressible shallow water motion are the Eulerian fluid velocity # and the total
depth of the water 7. These are given in terms of derivatives of the Lagrangian fluid labels by (cf. Eq. (2.2))

u'=—(D7NH1t and p=D. 2.5)

That is, three dimensional incompressiblity implies the fluid depth 7 is given by the Jacobian for the transformation
from the current Eulerian position x to the initial Lagrangian label /* with A = 1, 2. See, e.g., [12] for more details.
To develop the theory of approximate continuum dynamics models based on HP, we first rewrite the action in
Eq. (2.1) as
N3

0 —
L= / drdxdy |:If,‘m—i - H(} VIt VI, etc.)] : (2.6)

The Hamiltonian H (4. !*), with canonical momentum density defined by 74 = 8L/81f;‘ is found from the
Legendre transform of the action L(/4, /). Namely,

B

L —
H :/ dxdy (n’A - az_A) 1T+ HUAVIA, VI etc). Q.7

Hamilton’s canonical equations are:

§H 3L 5 AL N aH
= — =7 —_ _—— _
siA T T A E T A T A
SH , SH
[.‘? = 57A = “Ae H}can = ““ll_[?~ TA:r = _(SI_A = {T[Aa H}Can: (2-8)

where {-, -}can denotes the canonical Poisson bracket,

SF 8H 8H SF
FoHem = [ dxdy (2527 07 08 ) 29
tF. H) f o "(W Sta  SIA (SJTA) 29

The first equation in (2.8) relates the canonical momentum density 74 in phase space to the configuration space
variables /4 and lf}. Of course, this relation is equivalent to the usual one. For Lagrangians which are purely
quadratic in / f‘,‘, the last two terms cancel in the relation for 74 in (2.8) and solvability of the relation for the
canonical momentum density as a function of the configuration space variables depends on whether the matrix of
second derivatives appearing in that relation is invertible. For Lagrangians that are linear in velocity, however, that
matrix vanishes and both the quantity 3./ 81\’,‘ and the energy density 7 in Eq. (2.7) are functions of the spatial
derivatives of /4 only. Hence, the quantity 37 /3! f,‘ in (2.8) also vanishes. In this case, requiring that the defining
relation for the canonical momentum density,

ma =Ta(VI*) = 3L/317%. (2.10)

be preserved under the ensuing Hamiltonian dynamics leads to equations for the Lagrange multipliers [ f} in (2.7)
which enforce the defining relation (2.10) for the momentum density as a function of the spatial derivatives of the
Lagrangian fluid labels.
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2.1.2. Remark on Lagrangian submanifolds

In finite dimensions, a relation such as (2.10) between canonical momentum p and coordinate g (e.g., p =
35(q)/dq) would define a Lagrangian submanifold of the corresponding phase space (p, ¢). This is a manifold
whose dimension is equal to the dimension of the configuration space and on which the canonical two form dp A dg
defining the symplectic structure on the phase space is identically zero. Lagrangian submanifolds arise, for example,
in geometrical ray optics, see, e.g., [4]. Lagrangian submanifolds arise in making EG approximations in shallow
water dynamics because EG theory deals with singular Lagrangians.

2.1.3. Transformation to Eulerian fluid variables
We define the Eulerian momentum density m to be

m=48L/éu = —maVIA 2.1D)
for which Eq. (2.5) implies the useful relation
At =m-u. (2.12)

Hence. we may transform the Hamiltonian in (2.7) to
oL — A A
H = | dxdy m~a— ‘u+ Hu, VI? . VVI? etc.). (2.13)
u

For isotropic fluids, the dependence in 7 on WI4 is only though the fluid depth, 1. So we may write the Hamiltonian
for isotropic fluids as

oL _
Him,n) = / dxdy (m — E) -u+Hu.n V. etc.). (2.14)

Transforming Hamilton's canonical equations (2.8) to the Eulerian fluid variables, m. u and 7, gives the following
relations:

SH 9L AL oH
0= —=m- u— —+ —.
ou dudu du ou
_ oH
T sm’
an (. H) 5 3H v
— ={n, =—-din— = -V - nu.
ot 7 jn(Smj' 7
L LA (2.15)
— = {m;, = —(d;m; i) —— — i —. .
o1 ‘ SO S T sy

where 3; = 0x'.i = 1.2, acts on all terms standing to its right in a product. The first equation in (2.15) relates the
Eulerian momentum density m to other Eulerian fluid variables, . 1, and (possibly) V7. All the equations in (2.15)
are variable transformations of the momentum density relation and Hamilton’s canonical equations in the set (2.8).

2.1.4. Remark on Lie—Poisson brackets
The bracket notation in Eq. (2.15) denotes the Lie~Poisson bracket

(2.16)

i

8F SH 8H 3F, S8H
F.H}m.n)=— [ dxdy{—|@jm; +m;d;)— 3 — —adin—7.
{ Hm. n) / x dy {Sm [( im; +m; )(Smj +7n 37)}+ 5 ,nsmj}
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This Lie—Poisson bracket was obtained in [11] from the canonical Poisson bracket in (2.9), by simply applying the
chain rule for the change of variables from Lagrangian to Eulerian quantities,

(ma. 1Y) = (m, ) = (—w4VIA, det Vi), (2.17)

and proving that this change of variables is a Poisson map (i.e., it preserves Poisson brackets). For more discussion
of the role of Poisson maps in continuum mechanics and the mathematical properties of Lie~Poisson brackets, see,
e.g., [10-13], and references therein. For a review of Hamiltonian fluid mechanics, see [21].

2.1.5. The classical relations of ideal fluid dynamics
The last three equations in (2.15) combine to yield the equation of fluid motion in either the Lie-derivative form,

a /1 1 1 ; 8H
— (—m) +@-V)-m+-mjVu/ + V- =0, (2.18)
o1 \n ] n n

or, in the equivalent curl form,

a (1 1 8H 1
—_ (—m) + (curl—m) xu+V (— +-m- u) =0, (2.19)
dt \ n n n n

obtained from Eq. (2.18) by using the fundamental vector identity of fluid dynamics,
(curla) x b+ V(a-b) = (b-V)a+a;Vh/, (2.20)

with, in this case, @ = m/n and b = u. The Lie-derivative form (2.18) results naturally in Kelvin’s circulation
theorem,
d 1 a (1 i 1 : SH
— —m~dx=¢ — —m)+(u-V)—m+—mjVuf »dx=~fV—-dx=O, (2.21)
dr n ar \ n n n on
y () y(r) y (@)
for any closed loop y () moving with the fluid. This is the fluid analog of invariance of the Poincaré action integral
§ pdq in classical mechanics, since by Eq. (2.17)
d 1 d
S mde=-—— ¢ et =0 (2.22)
dt n dr n
vt y(t)
Taking the vector product of Z with the curl form of the fluid motion equation (2.19) gives an expression for the
fluid velocity in a “Bernoulli relation”,

A 3 /(1
nQu =2 x (VB + = (—m)) . (2.23)
at \ n
where Q is the potential vorticity,
1. 1
Q=-z- (curl—m) . (2.24)
n n
and B is the Bernoulli function, defined by
§H 1
B=—+-m-u (2.25)

n n



J.S. Allen, D.D. Holm/ Phyvsica D 98 (1996) 229-248 235

Either applying Stokes’s theorem in the motion equation in its Kelvin theorem form (2.21), or taking its curl in the
form (2.19), immediately implies the advection law,
d 9
0 _99,, vo-o. (2.26)
dr at

for the potential vorticity Q in (2.24).

2.1.6. The momentum constraint

The Eulerian momentum density m is given in terms of the other Eulerian fluid variables by the condition
dH/u = 0 1in Eq. (2.15). Thus, in this formulation the fluid velocity # in the Hamiltonian (2.13) appears as a
vector Lagrange multiplier which enforces the relation of the Eulerian momentum density to the other Eulerian
fluid variables as a dynamically preserved constraint. This definition is usually taken for granted. However, in what
follows we shall model the momentum density as a prescribed function of the other fluid variables, for example,

m =m(n. Vn,etc.) = m(n]. 227

where m[n] may be a functional of 7 and its spatial derivatives. In this type of modeling, we shall need the explicit
enforcement of the momentum definition (2.27), both as a constraint and as a means of determining the fluid velocity
for the model flow by using the method of Lagrange multipliers.

2.1.7. Linear fluid Lagrangians
For the case (2.27), the action in (2.6) is a linear function of the fluid velocity, «,

L= / drdx dym|n] -u — H[n] (2.28)
with potentially arbitrary forms of mi[r] and ﬁ[n]. From (2.14), the corresponding Hamiltonian is then
H= f dx dy(m —m[n)) - u + Hlnl. (2.29)
whose variational derivatives are given by
_ 8H
SH :/ dxdy |:u»8m+(m—m[n])-5u+ (—3—)&7] (2.30)
n
with
§H S§H om
SH _on om 2.31)
dn  dn én

For each modeling choice of the functions m[n] and H[n]. the fluid velocity # must be determined by analyzing the
motion equation (cf. Eq. (2.19))

o [1__ 1_ 8H 1__
— |\ -mlyl |+ (curl-mn] ) xu+V|—[n]l+u--m[n]| =0, (2.32)
9t \n n én n
and requiring it to be compatible with the continuity equation for 7,
d
8—7 SV =0 (2.33)

Because of the forms of the motion equation (2.32) and the continuity equation (2.33), the classical relations of ideal
fluid dynamics (2.23)—(2.26) are retained in the constrained (barred) variables, as well, even though the theory now
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possesses only one dynamical degree of freedom - the surface height. However, these relations only have meaning
so long as compatibility of the system (2.32) and (2.33) provides a solvable equation for u, as we shall assume here.
A detailed discussion of the effects of loss of solvability for u in this system is beyond the scope of the present
work, although this is clearly a useful endeavor for later work.

2.1.8. Conservation laws

The freedom to choose the functional forms of m([#] and H[n] in (2.29) opens a variety of modeling possibilities,
as we will illustrate in later sections for EG flows. For each modeling choice, the structure of the theory ensures
that the resulting approximate equations (2.32) and (2.33) conserve the integrated energy, given by

E= / dx dyHInl, 2.34)
and conserve the potential vorticity, on fluid parcels, i.e.,

90 —

3_?+u V0 =0, (2.35)

where potential vorticity is defined as
— 1 1
Q = -7 -curl-m[n]. (2.36)
n n
Consequently, the integral quantity (Casimir function [13]),
Co = f dx dyn®(0). (2.37)

is invariant under the model flow, for any function @, and for any choice of the functions m[»n] and ﬁ[n] in the
model Hamiltonian (so long as the system (2.32) and (2.33) remains solvable). The freedom to choose the functions
m(n] and ﬁ[n] is illustrated in our development of EG shallow water models in Section 2.2. Before proceeding to
develop these EG models in two dimensions, we note that the foregoing theory may be generalized to apply with
appropriate modifications in any number of dimensions.

2.2. Shallow water example

To explain ideas and notation, we begin in the context of a familiar example. Namely, we discuss HP for the
dimensionless RSW equations with variable Coriolis parameter f = f(x) and bottom topography b = b(x). These
equations are

3 . n—>b an
el —+u-V)u+ fixu+V|—) =0, — +V.-nu=0. 2.38
(31 ) f ( eF ) at 7 238)
The dimensional scales (bg, L, Uy, fo. g) in RSW dynamics denote characteristic fluid depth, horizontal length,
horizontal fluid velocity, reference Coriolis parameter, and gravitational acceleration, respectively. Dimensionless
quantities in Eq. (2.38) are unadorned and are related to their dimensional counterparts (decorated with primes),
according to

u' = Upu, x' = Lx, 1" = (L/Uy)t, f = fof.

, ’ ’ ’ 2.39
b =bob.  n=bon. ' —b =bo(n—b). (239)

The dimensional quantities are: ’, the horizontal fluid velocity; n’, the fluid depth; &', the equilibrium depth; and
n' — b, the free surface elevation.
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The dimensionless quantities € and F appearing in the RSW equations (2.38) are the Rossby number and the
squared ratio of the typical horizontal scale L to the external Rossby deformation radius, Lg, respectively. These
quantities are given by

U L? b
e=— and F=-> withr} =52 (2.40)
foL Lg fi

For barotropic horizontal motions at length scales L in the ocean for which the squared external Rossby ratio F is
of order O(1) — as we shall assume — the Rossby number ¢ is typically quite small (¢ < 1) and, thus, is a natural
parameter for making asymptotic expansions.

The RSW equation (2.38) follow from HP, namely § Lgsw = 0, with action Lgrsw given (with curl R = f(x)z2)

by

i ('7 - b)2 € 2
L = [ drdxdy ‘R — —nlul”|. 241
RSW f x dy _rzu iyl (2.41)
We rearrange the action Lggw as
-— (77 - bz) € 2
L = | drdxdy|m-u— - = . 242
RSW f xdy i u S F 57l (2.42)
in which the Eulerian momentum density is given by
8L
m= W _ R 1 enu. (2.43)
du
Legendre transforming Lrsw gives the constrained RSW Hamiltonian (cf. Eq. (2.14)),
_ -0 €
H = | dxdy —m) - - . 2.44
RSW f x }[(m m) -u+ e F + 3kl (2.44)
whose variational derivatives are given by (cf. Eq. (2.30))
n— b € 2
dHrsw = | dxdy|u-8m+ (m —enu — nR) - Su + —]__——Elul —u-R|)én|. (2.45)
€
In this case, the velocity u is easily obtained in terms of the momentum density m and fluid depth 7 as
u=(m-—nR)/en (2.46)

from the constraint equation, § Hrsw /8u = 0. Upon evaluating m in terms of u and 7, and calculating § Hrsw /87
by using (2.45), the motion equation (2.18), or equivalently, (2.19) appears in the form

ou . n—-b € ,
— — + —|ul” ) =0. 2.47
eat+(fz+ecur]u)xu+v< °F +2|u|> 0 (2.47)

This transforms easily to the RSW motion equation in (2.38) upon using the identity (2.20).
2.3. Quasigeostrophic approximation

In this section, we cast the well-known QG approximation [16] of the equations for RSW motion in a rotating
frame into a form which will be useful for formulating the Hamiltonian EG models developed later. Consistent
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with the QG approximation, we assume f(x) = 1 + €f;(x) and b(x) = 1 + €b;(x). We return to the RSW motion
equation in (2.38), rewritten as

d
e~ _fixu—Vh (2.48)
dr
where
d ad n—=b
=2 4u.v. h= . 2.49
dr ot tu eF ( )

Operating with Zx on Eq. (2.48) and expanding in powers of € yields

Uu=7xVh—€fif x Vh—¢ (% +ug - v) Vh 4 O(e?) = ug + cup + O(€?). (2.50)
where the geostrophic and ageostrophic components of the velocity are defined, respectively, by

ug=2zxVh and up= (%+ug-V)2xug~f1ug. 2.51)

The remainder of this paper is devoted to studying the class of RSW flows that satisfy condition (2.50). In Eq. (2.51),
ug is divergenceless and u o has divergence given by

a9
V'IIA:—(§+MG-V>V2h—uG.Vﬁ, (2.52)

in which V2 is the horizontal Laplacian. Substituting expression (2.52) for V -u 4 into the continuity equation (2.33)
rewritten as € Fh; = —V - nu and using the relations n = b + € Fh, u = ug + €ua and b(x) = 1+ €b; (x) yields
at order O(¢) the QG equation for the dimensionless free surface height, see, e.g., [16],

(%H«;-V)(ﬂz—vzh +by— fi)=0. (2.53)

Thus, in the QG approximation, the potential vorticity, defined by
g=Fh—Vih+b ~ fi (2.54)

is advected by the divergenceless geostrophic velocity ug. The positive-definite operator F — v is nondegenerate,
so its operator inverse 1/(F — V?2) exists and is well defined on Fourier transformable functions, say. Therefore,
the surface height / and its derivatives are determined uniquely from the potential vorticity g in QG theory.

The QG motion equation (2.53) also implies

9 (]—'hz IV h|2

=15 + > ):V-(th‘,—hug(}"h—Vzh—i—bl—fl)). (2.55)

Consequently, QG motion conserves the positive-definite energy;
Eoc Z/ dxdy(3 Fh? + LlugP?). (2.56)

provided the vector V# in (2.55) is normal to the domain boundary (so ug is tangential there) and provided the
boundary integral of the normal derivative of & ; vanishes [16].
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Finally, the QG motion equation (2.53) yields the formal expression,

2
he = F—gzlue - V(i —bi+ V')l (2.57)
whose gradient provides an estimate for the quantity 8;(Z x ug) = —Vh_, appearing in expression (2.51) for ua,
ua = (ug - V)i xug — Vh, — fiug. (2.58)

which may be written as

up = (ug - V)i xug =V J(h.¥) — fiug. (2.59)

F -~V
where ¥ = f| — by + V?h. Thus, in the QG approximation, the ageostrophic velocity may be expressed via (2.57)
entirely in terms of the geostrophic velocity and other spatial derivatives of surface height.

In the following sections, we shall discuss constrained approximations of the RSW equations (2.38) which
improve the QG approximation, while preserving the Hamiltonian structure of the unapproximated RSW equations.
The Hamiltonian formulation of the QG approximation itself is discussed in e.g., [23].

3. Derivation of the model equations
3.1. Order O(1) and Of¢) model

In nearly geostrophic shallow water flow, the Rossby number is small € << 1 and the squared ratio of horizontal
length scale to external Rossby deformation radius F is taken to be of order O(1). For simplicity in the following
derivations of model equations, we will retain the assumptions f(x) = 1 + €f1(x) and b(x) = | + €b1(x) utilized
in the QG approximation. These assumptions are not necessary, but are utilized because they allow the major points
to be made, while simplitying the analysis. These assumptions also help clarify the nature of the expansion, since
they imply that the well-known QG approximation will enter naturally as an intermediate step.

The fluid velocity may be represented as the sum of the leading order geostrophic velocity ug and a relatively
smaller, order O(¢), ageostrophic velocity €ua,

U =ug+e€ua 3.1)
with

—b
uG:2xV(n—):2xVh. (3.2)
eF

We substitute this representation of the fluid velocity into the shallow water HP, whose action is given in (2.42), to
find without approximation,

(3.3)

(n—5b? ¢
2eF 2 |

Lrsw = / drdxdy [nu (R + eug + €2up) — ———— — —nlug + eual’

As discussed earlier, we may now impose any approximation we choose foru 4 as a function of n and its derivatives.
Moreover, the approximations for u4 may be imposed independently in the momentum density § Lrsw/éu and in
the energy density. We may then use the theory presented in the previous section to cast this approximation into its
constrained Hamiltonian form.
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If € «< 1, one may begin making approximations in (3.3) by simply dropping both u a terms of order O(€?). The
remaining terms of order O(1) and O(e) give

- b >
L :[ dr dx dy [nu (R + eug) — ("zef ) _ %mucr}, (3.4)
which is in the form (2.28), with
_ 8L = n—b? €
= — =n(R R = — “. 35
m(n] u (R + eug) Hlnl e F + 2niucl (3.5)
The corresponding conserved Hamiltonian is, cf. (2.29),
H—/dxdv om— R — enucy-u+ 2 4 S pug? (3.6)
1= ] nuG 2eF 277 Gi |- .
This Hamiltonian has variational derivatives given by
o H, :/ dx dy’u -8m + (m — nR — enug) - du
€ 5 1, 1 -
+dn |:h + Elucl‘ + ?_z ~curlnp(u —ug) —u - (R+ euc,)] } — ?¢ dsnén(u —ug) - s, 3.7
where 8h = 6n/eF and we have used the identity
a - dug = div(a x z8h) — 8hz - curla, (3.8)

which holds for any vector function a. In (3.7), § = Z x f is the unit tangent vector on the boundary and 7 is the
unit outward normal vector, The boundary integral in (3.7) vanishes, provided the order O(e) ageostrophic velocity
difference u — ug has no rangential component on the boundary, which we assume. The velocity # must also have
no normal component on the boundary. Perhaps other boundary conditions could be imposed by using, say, the
standard technique of adding a null Lagrangian to L. (A null Lagrangian is the space and time integral of a total
divergence, whose only contribution in HP appears at the boundary. See, e.g., [7] for more discussion.) However,
this approach is not pursued here.
The dynamics for m/n at this order — O(e) — is given by Eqgs. (2.32) and (2.33) as

du 0
e—at£+(curl(R+euG))xu+VBl =0. 8—7+V~nu:0 3.9
with Bernoulli function B given by, cf. Eq. (2.25),
SH 1 € 1
Bi= - tu —m=h+=lugl® + —2 - curl n(u — ug). (3.10)
n n 2 F
Note that the last term in Eq. (3.10) is of order O(e). For V& = 0, Egs. (3.9) are equivalent to Salmon’s model
(with f = 1) derived in [19] by using HP with variations of particle paths at fixed time and at constant Lagrangian
label (instead of variations of Lagrangian labels at constant Eulerian position, as done here). For Vb # 0, Egs. (3.9)
are equivalent to those presented for Salmon’s model with bottom topography in [2], where it was also shown that
the boundary condition of zero tangential component of # — ug together with zero normal component of u ensures
energy conservation.
The classical ideal fluid relations (2.23)—(2.26) all hold for the Eulerian version of Salmon’s model given in
Egs. (3.9) and (3.10), since this model is derived from HP using a Lagrangian which — although it is linear in
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the velocity — still admits the symmetries of fluid particle relabeling and time translation. Thus, taking the vector
product of the first equation in (3.9) with Z gives the Bernoulli relation, cf. Eq. (2.23),

9
anzﬁx(V&—#e%). G.11)

where Q) is the potential vorticity for this theory, cf. Eq. (2.36),
nQ| Ef—l—i-curleu(;:f+evzh. (3.12)

in which f = I and V2 is the horizontal Laplacian. As expected (cf. Eq. (2.26)) the potential vorticity Q; is advected
by the flow

Y
Kl uvo =0 (3.13)
at
Rearranging (3.11) gives a modification of the QG relation (2.58),
€Vh,; =7zxVB| —nQu. (3.14)
However, from the continuity equation for n we also have

€FVh, =-—Vdiv(yu) (3.15)

withn = b+ eFh = | + eb| + € Fh. Equating these two expressions for V4 ; yields
1 . L
?Vdiv(nu) +7xV (h —+ glugf‘ + ?z -curlp(u — uc,)) —-(f +eVihu =0, (3.16)

which is a linear diagnostic partial differential equation for the fluid velocity (and Lagrange multiplier) u, given the
fluid depth 7. In passing we note that Eq. (3.15) gives the following expression for the leading order contribution to
Vh;:

FVh;=—-Viug Vb)) — Vdivus 3.17)

with divea given in Eq. (2.52). The numerical solution of Salmon’s HP model and its performance in comparison
with solutions of the RSW equations are discussed in [2,5]. See also [18] for a recent discussion of Salmon’s HP
model.

3.2. The order O(e*) model

Legendre transforming the unapproximated HP (3.3) for RSW dynamics with eus = u —ug leads to the following
unconstrained Hamiltonian:

N 1 , €
Hrsw = / dxd_\'[(m—n(R+eug+e‘uA))~u+ ﬁ(n—b)“%— %n{uc,—i-equ]. (3.18)

To obtain a class of order O(e”) EG models, we impose a modeling ansatz for the ageostrophic velocity u 4, based
on the form of the QG result (2.58) for u 4. Thus. we choose

1 , €
Hy = / dxdy [(m — (R + eug + €°up)) - u + 5eF M = 0+ Snlu + VéuA!2] ; (3.19)
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where ug = Z x Vh and uy is the prescribed function
. 1
up =t(ug - V)i x ug —atV (WJ(h, 1//)) — Bt fiug (3.20)

and ¢ = f| — by + V?h. The constants 7, «, 8, and y are regarded as free parameters. As we shall show, imposing
this ansatz for u, in the constrained Hamiltonian H; leads to a parameterized family of EG models. This family
includes the well-known GM model. These EG models will conserve the positive EG energy

(n—>b)? e 2
E> = dxdy — s 3.21
2 / x )( e F +2n|uc+yeuA| (3.21)

and will conserve the EG potential vorticity

|
Q> = —Z-curl(R + eug + un), (3.22)
n

on fluid particles.

3.2.1. The Geostrophic momentum model

Before substituting the modeling choice (3.20) for u, into the constrained Hamiltonian H in (3.18) and taking
variations, we briefly review the properties of the GM model. The GM model is described by Hoskins [14,15] (See
also [8], which is referenced in [ 14].) Recent developments and extensions of the GM model are discussed by Cullen
et al. [6], Roulstone and Norbury [17] and Roulstone and Sewell [18]. We review the GM model for the case in
which variations of the Coriolis parameter with position are ignored, i.e., fj = 0. The momentum is attributed to
the geostrophic motion, so that

d . a
UG +ixu+Vh=0. L 4iV.qu=0 (3.23)
dr ot
with
d d . n— b(x)
LI 7 - , o0 3.24
dr  9r tu-V uG =z x Vh h F (3.24)

The motion equation in (3.23) gives two linear equations for the two components of the velocity which we may
solve to find

(1 +etomu =2 x (VBg + eug,) + € J(h ;. uc). (3.25)
in which
B =h+elugl’.  ¢om = V?h +e€J(ug. vg) = % - curllug — te(ug - V)2 x ugl, (3.26)

and J denotes the Jacobian, e.g.. J(a. b) = a xb y — b xa_, for any two functions, a and b. In fact, the quantity

dug 0 dvg 0
Jug,ve) = T2 T8 - TEEE — det(hy) (3.27)

is the Hessian determinant and equilibrium GM solutions satisfy

=0, (3.28)

equilibrium

; (1 +eV2h + el det(h )

h h|?
| +eFh Telv ')

which is a geometrically intriguing generalization of the QG condition, J (g, &) = 0 at equilibrium, with ¢ defined
in (2.54).
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Rearranging (3.25) expresses the GM motion equation as
euG, + (1 + elom) x u + VBg +€>J(h,, Vh) =0, (3.29)
in which we note the relations
J(h; Vh)= (g, VIVh = —(ug, - V)I x ug. (3.30)
Expanding V J (4, h) by the chain rule and using the definition of the geostrophic velocity ug = Z x VA gives
Z2xVJh, . h) =(ug, Vug — (ug - Vug,. (3.31)

since J(h ;. h) =Z-ug, x ug. Consequently, we have the identity

9 R . -
E((uG Wz xug =2uc -V xug, —VJIh, h)=2ug, VI xug+VIth, h

=-2Jh,. Vh)+NVJ(h, h). (3.32)

and we find that
J(h,. Vh) = —%%((MG V2 X ug) + 3V I (h . h). (3.33)

or, equivalently,
—(uG, - V)Z xug = —%%((MG -V)Z xug) + ;V(é ‘UG X UG). (3.34)

Therefore, we may write the GM motion equation in (3.23), or equivalently, Eq. (3.29) in a form which will be
useful later, as

d ) N ) N
E(Eug - %e‘(uc -V)Z x ug) + (curl(Rg + eug — %6“(u(~, -V)Z xug)) xu

+ V(Bg + $€J(h . h)) = 0. (3.35)

where Ry = % (—y.x),sothat curl Ry = Z. This equation is in the same form as the constrained Hamiltonian motion
equation (2.32) with Eulerian momentum density defined by

5

%m = Ro+eug — S (ug - V)2 x ug. (3.36)
The factor w% in the ageostrophic velocity ua = —%(uc, - V)z X ug here, relative to the corresponding factor of
+1 for QG in (2.58), is a peculiarity of the GM model. Nonetheless, the classical ideal fiuid relations (2.18)—(2.26)
and conservation of the EG energy (3.21) (with y = 0) all hold for the GM model at order 0(62). For example,
the continuity equation for # and the curl of the motion equation (3.35) imply potential vorticity advection for GM,
dEGM /dr = 0, with U@GM = | +€fgm. Hence, the geometrically intriguing condition (3.28) for GM equilibria is
expressible in the briefer standard form, J(Qgwm. Bg) = 0 at equilibrium, which stems from preservation in the GM
model of the underlying Lie—Poisson Hamiltonian structure (2.16) for RSW. (See, e.g., [9,13] for discussions of the
relation between fluid equilibrium conditions and Lie-Poisson Hamiltonian structure.) In the following sections,
we shall place the GM model into a family of EG models derived from HP by modeling RSW using Lagrangians
that are linear in the fluid velocity. The classical ideal fluid relations satisfied by the GM model then follow as
consequences of HP.
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3.2.2. Variational calculation at order O(e?)
Our constrained Hamiltonian is given by (3.19) where we use the modeling ansatz (3.20) for u 4. Taking variations

gives
SH, :f dxdy{u - 8m+ (m — 1R — enuc — €*nuy) - du + sn[h + Selug + yeual?
—u- R+ eug+efup)| — enu? - sug — 2na” - sua), (3.37)
where we denote
") =u —ug — yeua. (3.38)
4" =u — yug — yzeuA (3.39)

and u, is given in Eq. (3.20) in terms of /. The next to last term in (3.37) is given by

SoHr = —ef dx dynu™ . sug = e/ dx dyshz - curln@!’) — ef dsshns -, (3.40)
We separate the last term in (3.37) into three pieces by setting

Aezf dxdynit”) - Sup = SHuot + 81 Hy + 82 H,, (3.41)
where

SHior = Bre? / dxdyni'”) - fi(x)dug, (3.42)

81Hy = —arGZ/ dxdyna'? - v (f: Vz) [J(8h. ) + J (h, VZ8h)], (3.43)

S Hy = —TEZ/ dx dynat”) - [(dug - V)2 x ug + (ug - V)Z x Sug. (3.44)
Beginning with § H,;, we utilize (3.8) to find

§Hpor = ——ﬁrez/ dx dy[8hz - curl(nfi (x)a'"))] + éf;—zy{ ds[néhfia'r - 5. (3.45)

Next we compute 8 H>,

-1
F - V2

1
= —arezj dxdyéh {2 -curl l:(]__—_lﬁf]z) Vt//:] + v? (J (h, mﬁt))}

-1
— atezf dsa - na") I:T' o2 (bug - Vy +ug - VVZSI:)]

81H2:—ar62/ dxdyna”’ . v [Sucg - VY +ug - VV25h)

—1
—are? 56 ds (7 — ﬁ,) [/ - ug(V28h) + 8hs - V], (3.46)
where 8h = 8n/eF, and 7, is defined by

. = —divpa”) = n, + ydivn(uc + yeun), (347)
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and we have integrated by parts several times using the identity (3.8). Similarly, we compute the other variation,
(3.44), as

S Hy, = —tezf dxdyna? - [(Sug - V)Z x ug + (ug - V) x dug]
:—T62/ dx dyshz - curl2n@" - V)Vh + (divna™")Vh]

+r62% ds - [ug(n™) - Vsh) — sh((ug - Vi + ("’ - Vug)). (3.48)

For simplicity, we may set the boundary integral terms in (3.40), (3.45), (3.46) and (3.48) equal to zero by assuming
the domain is infinite with # and V4 vanishing at infinity. We also assume there is no difficulty with boundary
conditions in taking 1/(F — V?) to be a symmetric operator when integrating by parts.

After completing this variational computation, we find

S0H2 + 8 Hpor + 81 Hy + 62 H

= e/ dx dyshz - curlnu'”) — 62/ dx dy{téhﬁ -cur]|:2n(ﬁ”’) -V)Vh—1,Vh

(I awm)W/ + ﬁnflﬁ“’)] + r(SthJ(h ffwﬁ") } (3.49)

Hence, with €5h = én/F,
8H» :/ dxdy{u -ém+ (m — nR — enug — ezr;uA) - du
€
+ (Sn[h + ;luG + )/euAl2 —u-(R+eug +ezuA)]
1, .
+ Bn?z -Curl[n(u —ug — yeup) — et2n@"’’ - V)Vh
€ —
+etn,;Vh —etBnfia'’ + 1//V(JT o2 7. ,)] + Sn?rvzj( 7 Vﬁn ,) } (3.50)

The equation of motion which results from inserting these variational derivatives into (2.32) is

)
E(eug +€2up) + curl(R + eug + €2up) xu + VB> = 0, (3.51)

in which the Bernoulli function is expressed as, cf. Eq. (2.25),

€ B | ~ A (1)
Br=h+ ;iug + yeua|” + 7__2 - curl[n(u — UG — YEUA) — etZr](u“’) -V)Vh

A I i + v (=2 Terg(n —5.,). 3.52
K etpnfia”’ + 4 (]_-_Vz’?.r + 7 7ol (3.52)
where 7, = —divna'”’ and the ageostrophic velocity u4 is given by (3.20).

Fort = —%. ¢ =B =y =0 and fi = b; = 0. the motion equation (3.51) reduces to

) 2 ~ 2 ~
E(EUG - %E‘(uc. < WVzZ x ug) + (curl(R + eug — %e‘(uc, -V)Z x ug) x u)

1 d
+Vih+ %Iu(;\z - 5_%2 -eurl[AVn ] + ?2 - curl I:n (u —ug + e-d—th>]] =0. (3.53)
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Eq. (3.53) is equivalent to the GM equation (3.35) with b; = 0. In this case, = 1 +¢F# and the last term of B, in
Eq. (3.53) reduces to nz x the left-hand side of the GM motion equation in (3.23). Thus in this case the Hamiltonian
EG model equation (3.53) is expressible as a result of Eq. (3.35) in the form

1 i
GM — fVE -curl(nz x GM) = (I— ?Vdivn) GM = 0. (3.54)

where GM is the left-hand side of the GM motion equation in (3.23), or equivalently, the left-hand side of Eq. (3.35),
and Z is the identity matrix. The GM equation (3.35) for b # 0 is recovered with the choice

1 . |
uA=—E(uc,-V)zxuc,—ﬁVJ(h,bl). (3.55)

Note that last term in (3.55) is equivalent to a part of the second term in (3.20) with T = —-% anda = 1.

For the modeling parameters set equal to values indicated by the QG result (2.59), i.e., fort = = = 1, and
with the choice y = 1 so that the conserved kinetic energy density in E is %erﬂuc + €ua |?, the Bernoulli function
in (3.52) is

> 1 N . N
By=h+ §|uc. + €upl” + ?z . curl|:n(u —e2(u - V)Vh — efimr)

1 € —1
1. Vh+ ¥V [ ——h =2y (h.——5. ). 3.56
+en,Vh+y (]:_Vzﬂ,t)]‘f‘}. ( }._szl,r), (3.56)
where we denote
i=u—ug—ecup and 7, = —divya. (3.57)

When & = 0, Egs. (3.51) and (3.56) recover the RSW motion equation in (2.47) with small variations in Coriolis
parameter and bottom topography.

3.3. Summary comments

By construction, each member of the family of Hamiltonian EG model equations (3.51) — for any choice of
(z, @, y, B) and for any functional forms of curl R(x), f1(x) and b, (x) — possesses a Kelvin circulation theorem, cf.
Eq. (2.21), in the form

d
5 % (R + eug + €2uy) - dx = 0. (3.58)
y (1)

These equations therefore admit an advection law for the potential vorticity Q5,

d 1.
_‘th_z +u-VQr=0 withQ = ~7-curl(R + eug + ezuA), (3.59)
n

in which u4 is given in Eq. (3.20). The Hamiltonian EG equations (3.51) also satisfy the Bernoulli relation,

. a3
nQou =2 x (V32 + 5(6140 + ezuA)> , (3.60)

with B; given in (3.52). The Bemnoulli relation (3.60) is one point of departure for an iterative solution for u.
Rearranging (3.60) and using the continuity equation for n gives

—1 ) .9
€Vh; = — Vdiviu =2 x VB —nQou + €% x —a"t—" (3.61)



J.S. Allen, D.D. Holm/Phvsica D 98 (1996) 229-248 247

which is a linear diagnostic partial differential equation for the fluid velocity (and Lagrange multiplier) u, given
the fluid depth 7. This equation may be approached in various ways, e.g., by first dropping order O(e?) terms, then
iterating.

The family of equations (3.51) conserves the EG energy E; in (3.21) and the Casimir functions Co in (2.37).
Therefore, this family of models admits Hamiltonian methods for identifying classes of steady solutions as relative
equilibria (critical points of the sum Ho = E>+Cg) and studying their stability properties using the energy-Casimir
method, discussed, e.g., in [13] and references therein.

Note that by choosing the functional form of 4 and the values for the modeling parameters (7, @, ¥, B), the
particular forms of the potential vorticity Q> and the energy E, that are conserved can be specified. The choice
T =a = f = 1, s0 that us agrees with (2.59), which is given by an asymptotic expansion of the RSW equations
to O(¢), and the choice of y = 1, which results in kinetic energy conservation involving |ug + €u A\Q, give unified
boundary conditions and expressions for Q> and E> with apparently highest order dynamical consistency. Thus,
this particular new model, which is given by the motion equation (3.51) with Bernoulli function (3.56), may be
expected to give more accurate approximate solutions than either GM or Salmon’s model does. We summarize the
equations of motion, Bernoulli function and ageostrophic velocity for this model as follows:

3
o (euc + ¢up) —u x curl(R + eug + €*up) + VB2 =0, (3.62)

1
B=h+ gluc + eunl’ + ?2 . curl[n(ﬁ —2e(ii - V)Vh — efit)

N l - € ( —1 ~
R 1 .
uA:(uG'V)ZXuG“V(mJ(h,W)>'_f]uG. (3.64)
where i = u — ug — €ua and 7, = —divna. Both the stability characteristics of equilibrium solutions of this

family of Hamiltomian EG models of RSW motion and their solution by numerical integration will be discussed
elsewhere. Finally, we point out that these results can be formally generalized to account for O(1) variations in bottom
topography b(x). i.e., for Vb = O(1), and to include a Coriolis parameter f (x) with general spatial variability.

Acknowledgements

We are grateful to P. Gent and J.C. McWilliams for valuable discussions. This work is partially supported for
DDH by the US Department of Energy CHAMMP program and for JSA by NSF Grant OCE-9314317 and by ONR
grant NO0014-93-1-1301. We would also like to thank IGPP and CNLS at Los Alamos for their hospitality at the
Summer ‘94 Workshop on Ocean Modeling, where some of this work was completed.

References

(1] H.D.1. Abarbanel and D.D. Holm, Nonlinear stability of inviscid flows in three dimensions: incompressible fluids and barotropic
fluids. Phys. Fluids 30 (1987) 3369-3382.

(2] J.S. Allen, J.A. Barth and P.A. Newberger. On intermediate models for barotropic continental shelf and slope flow fields. Part I
Formulation and comparison of exact solutions, J. Phys. Oceanogr. 20 (1990) 1017-1042.

13] J.S. Allen. J.A. Barth and P.A. Newberger, On intermediate models for barotropic continental shelf and slope flow fields. Part I11:
Comparison of numerical model solutions in periodic channels. J. Phys. Oceanogr. 20 (1990) 1949-1973.



248 J.S. Allen, D.D. Holm/ Physica D 98 (1996) 229-248

[4] V.I. Amold, Mathematical Methods for Classical Mechanics, 2nd Ed. (Springer, New York, 1989).
[5] J.A. Barth, J.S. Allen and P.A. Newberger, On intermediate models for barotropic continental shelf and slope flow fields. Part II:
Comparison of numerical model solutions in doubly periodic domains, J. Phys. Oceanogr. 20 (1990) 1044—1076.
[6] M.J.P. Cullen, J. Norbury, R.J. Purser and G.J. Shutts, Modeling the quasi-equilibrium dynamics of the atmosphere, Q.J.R. Met. Soc.
113 (1987) 735-757.
{7] D.G.B. Edelen, Aspects of variational arguments in the theory of elasticity: fact and folklore, Int. J. Eng: Solids Structures 17 (1981)
729-740.
[8] A. Eliassen, The quasi-static equations of motion with pressure as independent variable, Geofys. Publ. 17 (3) (1948).
[9] D.D. Holm, Nonlinear stability of ideal fluid equilibria, in: Enrico Fermi School of Physics, Nonlinear Topics in Ocean Physics
(North-Holland, Amsterdam, 1991) pp. 133-173.
[10] D.D. Holm and B.A. Kupershmidt, Poisson brackets and Clebsch representations for magnetohydrodynamics, multifluid plasmas,
and elasticity, Physica D 6(1983) 347-363.
[11] D.D. Holm, B.A. Kupershmidt and C.D. Levermore, Canonical maps between Poisson brackets in Eulerian and Lagrangian
descriptions of continuum mechanics, Phys. Lett. A 98 (1983) 389-395.
{121 D.D. Holm, J.E. Marsden and T. Ratiu, Hamiltonian Structure and Lyapunov Stability for Ideal Continuum Dynamics, ISBN 2-
7606-0771-2 (University of Montreal Press, Montreal, 1986).
[13] D.D. Holm, J.E. Marsden, T. Ratiu and A. Weinstein, Nonlinear stability of fluid and plasma equilibria, Phys. Rep. 123 (1985) 1-116.
[14] B.J. Hoskins, The geostrophic momentum approximation and the semigeostrophic equations, J. Atmospheric Sci. 32 (1975) 233-242.
[15] B.J. Hoskins, The mathematical theory of frontogenesis, Ann. Rev. Fluid Mech. 14 (1982) 431444,
[16] J. Pedlosky, Geophysical Fluid Dynamics, 2nd Ed. (Springer, New York, 1987).
[17] 1. Roulstone and J. Norbury. A Hamiltonian structure with contact geometry for the semi-geostrophic equations, J. Fluid Mech. 272
(1994) 211-233.
[18] 1. Roulstone and M. Sewell, Potential vorticities in semi-geostrophic theory, Q.J.R. Met. Soc., to appear.
[19] R. Salmon, Practical use of Hamilton’s principle, J. Fluid Mech. 132 (1983) 431-444.
[20]) R. Salmon, New equations for nearly geostrophic flow, J. Fluid Mech. 153 (1985) 461-477.
[21] R. Salmon, Hamiltonian fluid mechanics, Ann. Rev. Fluid Mech. 20 (1988) 225-256.
[22] R. Salmon, Semigeostrophic theory as a Dirac-bracket projection, J. Fluid Mech. 196 (1988) 345-358.
[23] A Weinstein, Hamiltonian structure for drift waves and geostrophic flow, Phys. Fluids 26 (1983) 388-390.
[24] G.B. Whitham, Linear and Nonlinear Waves (Wiley, New York. 1974).



